Neurochemical and Behavior Deficits in Rats with Iron and Rotenone Co-treatment: Role of Redox Imbalance and Neuroprotection by Biochanin A

نویسندگان

  • Lijia Yu
  • Xijin Wang
  • Hanqing Chen
  • Zhiqiang Yan
  • Meihua Wang
  • Yunhong Li
چکیده

Increasing evidences show that the etiology of Parkinson's disease (PD) is multifactorial. Studying the combined effect of several factors is becoming a hot topic in PD research. On one hand, iron is one of the essential trace metals for human body; on the other hand, iron may be involved in the etiopathogenesis of PD. In our present study, the rats with increased neonatal iron (120 μg/g bodyweight) supplementation were treated with rotenone (0.5 mg/kg) when they were aged to 14 weeks. We observed that iron and rotenone co-treatment induced significant behavior deficits (time-dependent) and striatal dopamine depletion in the male and female rats, while they did not do so when they were used alone. No significant change in striatal 5-hydroxytryptamine content was observed in the male and female rats with iron and rotenone co-treatment. Also, iron and rotenone co-treatment significantly decreased substantia nigra TH expression in the male rats. Furthermore, co-treatment with iron and rotenone significantly induced malondialdehyde increase and glutathione decrease in the substantia nigra of male and female rats. There was no significant change in cerebellar malondialdehyde and glutathione content of the rats co-treated with iron and rotenone. Interestingly, biochanin A significantly attenuated striatal dopamine depletion and improved behavior deficits (dose-dependently) in the male and female rats with iron and rotenone co-treatment. Biochanin A treatment also significantly alleviated substantia nigra TH expression reduction in the male rats co-treated with iron and rotenone. Finally, biochanin A significantly decreased malondialdehyde content and increased glutathione content in the substantia nigra of male and female rats with iron and rotenone co-treatment. Our results indicate that iron and rotenone co-treatment may result in aggravated neurochemical and behavior deficits through inducing redox imbalance and increased neonatal iron supplementation may participate in the etiopathogenesis of PD. Moreover, biochanin A may exert dopaminergic neuroprotection by maintaining redox balance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aging-related rotenone-induced neurochemical and behavioral deficits: role of SIRT2 and redox imbalance, and neuroprotection by AK-7

Aging is one of the strongest risk factors for Parkinson's disease (PD). SIRT2 has been implicated in the aging process. It is pertinent to investigate the role of SIRT2 in aging-related dopaminergic neurotoxicity and to develop effective therapeutic strategies for PD through the use of aging animals. In this study, we observed that rotenone induced significant behavior abnormality and striatal...

متن کامل

Behavioral and Neurochemical Deficits in Aging Rats with Increased Neonatal Iron Intake: Silibinin’s Neuroprotection by Maintaining Redox Balance

Aging is a critical risk factor for Parkinson's disease. Silibinin, a major flavonoid in Silybum marianum, has been suggested to display neuroprotective properties against various neurodegenerative diseases. In the present study, we observed that neonatal iron (120 μg/g body weight) supplementation resulted in significant abnormality of behavior and depletion of striatal dopamine (DA) in the ag...

متن کامل

Neuroprotection and restoration of the nigrostriatal dopaminergic system in 6-OHDA lesioned rat model of Parkinson's disease: Role of GDNF and TGF expressing Zuckerkandl's organ

Zuckerkandl’s organ (ZK) is an extra adrenal para-ganglion and has the ability to express glial cell line derived neurotrophic factor (GDNF) and transforming growth factor (TGF). It is also a source of dopamine and norepinephrine. In the present study, the neuroprotective and restorative potential of ZK was studied by transplanting it into the striatum of adult rats either before or after the i...

متن کامل

Neuroprotection and restoration of the nigrostriatal dopaminergic system in 6-OHDA lesioned rat model of Parkinson's disease: Role of GDNF and TGF expressing Zuckerkandl's organ

Zuckerkandl’s organ (ZK) is an extra adrenal para-ganglion and has the ability to express glial cell line derived neurotrophic factor (GDNF) and transforming growth factor (TGF). It is also a source of dopamine and norepinephrine. In the present study, the neuroprotective and restorative potential of ZK was studied by transplanting it into the striatum of adult rats either before or after the i...

متن کامل

Mitochondrial Complex I Is an Essential Player in LPS-Induced Preconditioning in Differentiated PC12 Cells

Preconditioning (PC) as a protective strategy against noxious insults can decline cell death and apoptosis. It has been approved that mitochondria play a key role in PC mechanism. The critical role of complex I (CI) in oxidative phosphorylation machinery and intracellular ROS production, particularly in the brain, accentuates its possible role in PC-induced neuroprotection. Here, differentiated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017